
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, 
for the United States Department of Energyʼs National Nuclear Security Administration  

 under contract DE-AC04-94AL85000.#

Scott A. Mitchell

Computing Research
Sandia National Laboratories

International Meshing Roundtable

October 2013
20 minute talk, 5 minute questions

Simple and Fast Interval Assignment 
Using Nonlinear and Piecewise Linear Objectives  

"

linearized-objective-bigfont.pdf

g 1 3 2 5 4 7 6 9 8

(g/x – 1)3 (x/g – 1)3

o o

o

o

o
o

o

o
full piecewise linear objective

o

Outline

•  Problem definition
–  a few simple examples of why it is hard

•  tradeoffs needed
•  may be infeasible

–  an infeasible example

•  Prior approaches
–  Linear constraints – good
–  Linear objective – not so much IMHO, depending on setting

•  Tam & Armstrong concentrates deviations
•  Lex min max is slow series of problems

•  New solution
–  Cubic Objective
–  Piecewise linear to get integer solution
–  Implemented

Interval Assignment Summary

•  First known improvement to FEM interval assignment structure since 1997
lexicographic min-max

–  Lots of people write new constraints for new schemes, but this is first change to objective
(except Graphics community solving related-but-different problem using MIQP)

•  Implemented in MeshKit, using IPOPT
–  scales to thousands of surfaces in nuclear reactor core models
–  1997-2013, Cubit runs lex min-max for every quad and hex mesh
–  New solution may migrate to Cubit, as Cubit includes MeshKit library

Simple and Fast Interval Assignment Using

Nonlinear and Piecewise Linear Objectives

Scott A. Mitchell

Sandia National Laboratories, samitch@sandia.gov

Summary. Interval Assignment IA is the problem of assigning an integer number
of mesh edges, intervals, to each curve so that the assigned value is close to the goal
value, and all containing surfaces and volumes may be meshed independently and
compatibly. I solve IA more quickly than the prior lexicographic min-max approach.
A problem with one thousand faces and ten thousand curves can be solved in one
second. I still achieve good compromises when the assigned intervals must deviate a
large amount from their goals. The constraints are the same as in prior approaches,
but I define a new objective function, the sum of cubes of the weighted deviations
from the goals. I solve the relaxed (non-integer) problem with this cubic objective,
then adaptively change it into a piecewise linear function and resolve to find a natural
nearby integer solution. For variables stuck at non-integer values, I randomize and
rescale weights. If that fails, and for the sum-even constrains, I introduce non-linear
constraints to force integrality.

1 Introduction

1.1 Problem Definition

I revisit Interval Assignment (IA) for quad and hex meshing. IA is the problem
of assigning to each curve the number of mesh edges (intervals) it should be
subdivided into, so that every containing surface and volume can be meshed
according to its scheme. Different meshing algorithms have different require-
ments. For example, map-meshing a rectangular surface with quadrilaterals
requires that curves on opposite sides contain exactly the same number of
edges. Interval assignment is important for automation and meshing indepen-
dence, and also for mesh quality. Given a global IA solution, each surface and
volume containing a curve can be meshed independently without affecting
another. (This ignores the geometric spacing of the edges. Issues like skew
control may be addressed using interval assignment over virtual geometry.)
IA can be applied to triangular and tet meshes, but the problem is uninter-
esting because it is trivial to satisfy the requirements, and each curve may be
assigned intervals independently.

6 Scott A. Mitchell

1 2 3 4

(x-1)2 (x-2)2 (x-4)2 (x-3)2

wave-int.pdf

x3

x2

x1
!
 !!
 !!
 !

!
 !

Fig. 2: Left, wave integer constraints. Center & right, the global structure can
conspire to produce an effective coefficient larger than one: x3 = x1+x2 = 2x1.
The bend strategy can get stuck with x3 integer (e.g. 5) and x1 = x2 half-
integer (e.g. 2.5). Tilting to increase the objective weight of x1 and x2 may
overcome this, or a wave-constraint can force x1, x2 to an integer value.

Graphics Quad Meshing with Mixed-integer Optimization

Quadrilateral meshing has recently become popular in the Graphics commu-
nity [3]. Graphic’s objectives and types of surfaces are slightly different, but
the opposite-sides-equal constraints are universal for structured quad patches.
The models are typically smooth closed surfaces, divided into structured
patches. David Bommes has a series of papers, and a Best Thesis Award at
Eurographics 2013, exploring quad-meshing using mixed-integer optimization
problems with linear constraints and a quadratic objective, MIQP.

Bommes et al. [4] creates quadrilateral meshes of surfaces for graphics
modeling using two MIQPs. The meshes are based on the semi-structured
patches that result from defining quad-dual curves: a.k.a. loops in Spatial
Twist Continuum terminology. This has some similarities to midpoint subdi-
vision and fluid flow templates, except that the templates are not fixed, but
are the solution to a MIQP. The first MIQP fixes the number and position of
irregular vertices, the corners of the patches. Let us call this the corner-phase.
The second MIQP sets the structure of the patches, connects the dual loops,
and assign intervals. Let us call this the patch-phase.

The input is the graphics triangulation of a surface model. Sharp angles
define curves; these often do not form primal loops, and the location and struc-
ture of additional curves to close them is part of the solution. The goals are
good quad angles; orientation of the loops with respect to curvature and sharp
features, the cross field; and especially the number and placement of irregular
mesh vertices, i.e. those with edge valence different than four, singularities in
the cross-fields; plus any other user-specified or modeling or animation objec-
tives. The loops (templates) are not fixed a-priori, instead they follow from
the irregular vertices. The patch-phase problem is always feasible, and succes-
sively rounding non-integer variables to integer values and resolving always
leads to an integer solution, because it comes from the solution to the corner-
phase. Branch and bound, and other standard integerization techniques that
do not exploit the problem structure, have proven to be too slow in the Graph-

I just relax 	

 bend	

 tilt & wave! J	

•  New nonlinear objective function
•  Finesse integer constraints using

L1 minimization of convex
piecewise linear approximation

•  adapt piecewise, slope
•  heuristics for constraint interactions

tilts-bigfont.pdf

g 1 3 2 5 4 7 6 9 8

tilted objective

linearized-objective-bigfont.pdf

g 1 3 2 5 4 7 6 9 8

(g/x – 1)3 (x/g – 1)3

o o

o

o

o
o

o

o
full piecewise linear objective

o

Cubic-objective-bigfont.pdf

g 1 3 2 5 4 7 6 9 8

(g/x – 1)3 (x/g – 1)3

x(r)

x

2 Scott A. Mitchell

IA in some form is required for all quad and hex meshing. The prob-
lem is surprisingly difficult. The requirements are easily described locally, but
surfaces sharing common curves create dependencies that make IA a global
problem. A good algorithm is important. A greedy strategy of assigning in-
tervals for one surface, then for another surface, can fail by “painting yourself
into a corner.” Solving the global problem using standard optimization tech-
niques is difficult because IA requires an integer number of intervals. That is,
mesh nodes are discrete quantities dividing curves into a discrete number of
mesh edges. Half of an edge makes no sense.

Optimization and Linear Constraints

General global integer optimization is a difficult and slow problem, and any
effective IA algorithm must exploit the problem structure. A key feature of
all the constraints is that they can be described using a linear equation; that
is, if xi is the number of intervals assigned to the ith curve (or virtual curve,
etc.), then the equation describing the constraint only contains xi raised to the
first power, with no x2

i terms, etc. Linear constraints are the simplest in opti-
mization. We write Ax = b; equality and inequality constraints are equivalent
using standard conversions, such as slack variables, or requiring both Ax ≥ b
and Ax ≤ b. Every variable has upper and lower bounds, perhaps infinite.
Interval variables must be integer and positive, in the natural numbers N.
Integer variables are identified by an indicator set I. There may be additional
variables, perhaps for computing intermediate quantities not apparent in the
model; for conciseness we also denote these by x. An important example of
this is for unstructured quad meshing schemes, such as paving, where the sum
of intervals around any set of bounding curves must be even. We constrain
2xj =

�
b∈bdy xb, and require xj to be an integer. Any assignment satisfying

these constraints is feasible. Removing the requirements for integrality defines
the relaxed problem. A feasible solution to it is a useful step towards an integer
solution.

We have an idea of the number of intervals we would like for each curve,
the goals. These may come from a sizing function: e.g. edges about length 4,
so a curve of length 10 has a goal of 2.5 intervals. Or the user may specify
the number directly, such as “at least ten edges through the thickness for
accuracy in weld simulations.” We assume goals are constant throughout IA.
There may be no feasible solution satisfying all the goals. We measure the
deviation of the achieved interval xi from its goal gi. We have some objective

function f(x, g) of the deviations, where f(x) = 0 if all the deviations are
zero, and f(x) > 0 otherwise. IA in standard form is

min f(x)

s.t. Ax = b

xI ∈ N
l ≤ x ≤ u.

(1)

Interval Assignment (IA)
Problem Definition

• Set the number of mesh edges on each curve,
such that the owning surfaces and volumes
can be meshed according to their schemes.
– compatible interface meshes, e.g. for parallel
– quad and hex meshing

•  triangle and tet meshes have trivial constraints

a	

 c	

b	

map	

e	

d	

h	

g	

f	

pave	

a=b+c	

d=e	

b+c+f+g+h=even number	

all variables integer (e.g. a=4, b=2.5, c=1.5 is not valid)	

Why is Interval Assignment Hard?
•  What’s the problem?

–  hex meshing is a global problem
–  quad meshing is a global problem

•  for the same reasons,
•  but with much weaker constraints

•  Integrality makes it much harder.
–  Discrete problem
–  Combinatorial algorithms needed

Engineering Sciences Center

Motivation

Structured quadrilateral meshing

Quads
• better analysis for structural mechanics,

• but, very dependent on shape of quads (not topology)

Structured
• lower memory, faster speed than unstructured

• In 3d, many hex algorithms 2.5 dimensional

• Applications: car crankshafts, tire treads & cross-sec-
tions, weapon components

+ twists, turns,
and branching

Sweep ���
same quad mesh	

connectivity front and back	

Map���
same curve mesh connectivity	

top and bottom. e.g. 3 edges	

Hexahedral mesh existence

2d STC

edges form 2 opposite pairs

Quad:
dual vertices degree 4

Triangle:
dual vertices degree 3

no “opposite” edge.

2-cell

self-
intersecting
chord

edge

A quadrilateral mesh and the corresponding STC.

loop

Hexahedral mesh existence

3d STC

Surface represents a layer of hexes

Curve of intersection represents a line of hexes

Vertex of intersection represents a single hex

surface

curvevertex
curve

Unstructured quad meshing:	

 Each chord enters the quad mesh an even number of times (0 or 2) 	

 so we need an even number of mesh edges on the boundary.	

 (necessary and topologically sufficient)	

Unstructured hex meshing:	

 Each chord enters the hex mesh an even number of times (0 or 2) 	

 so we need an even number of quads on the boundary.	

 Plus contractible loops must be even.	

 (necessary and topologically sufficient)	

Interval Assignment
by linear constraints is old

Interval assignment problem form
•  Linear constraints, linear objective

–  Tam & Armstrong 1993
•  Linear constraints, lexicographic min-max objective

–  Mitchell 1997
•  Fluid flow matching

–  Muller-Hanneman 1997
•  Linear constraints, quadratic objective

–  Bommes et al. 2009+

Interval assignment constraints
•  Volumes with holes

–  Shepherd et al.
•  Midpoint subdivision
•  Paver
•  Submapping
•  Skew control

Automatic Scheme selection
–  White & Tautges 2000

Popular to define constraints for
new meshing schemes.	

	

	

Little change to 	

objective function form	

in FEM community ���
1997—this paper	

	

(But active area in Graphics 2009+)	

Local Constraints

• Each surface has local constraints
– depending on scheme (structure)
– depending on user desires (sizing, skew)

map	

 pave	

Goodyear tire	

holes line up, smaller than outside	

Eloi Ruiz-Gironés	

Edge length at least 0.1:	

X <= 4	

submap	

a	

b	

e	

d	

c	

midpoint subdivision	

side1 = a+b	

side2 = c+d	

side3 = e	

side1 <= side2 + side3	

side2 <= side1 + side3	

side3 <= side2 + side3	

curve has at least one edge	

x >= 1	

a	

b	

c	

d	

e	

d – e + a + b = c	

e <= d + 1	

a < c	

e < a OR ...	

submap	

Mixed-Integer Linear Constraints

•  Constraints are linear, no high powers such as x2 = y3

•  Coefficients are typically 1.
•  Sum-even modeled with artificial variable, 2-coefficient

–  sum(xi)=even ó sum(xi) = 2z : z is integer
•  Expressed in matrix form

•  Inequality and equality are equivalent
–  Ax ≥ b ó Ax + y = b, y ≥ 0
–  Ax = b ó Ax ≤ b and Ax ≥ b

2 Scott A. Mitchell

IA in some form is required for all quad and hex meshing. The prob-
lem is surprisingly difficult. The requirements are easily described locally, but
surfaces sharing common curves create dependencies that make IA a global
problem. A good algorithm is important. A greedy strategy of assigning in-
tervals for one surface, then for another surface, can fail by “painting yourself
into a corner.” Solving the global problem using standard optimization tech-
niques is difficult because IA requires an integer number of intervals. That is,
mesh nodes are discrete quantities dividing curves into a discrete number of
mesh edges. Half of an edge makes no sense.

Optimization and Linear Constraints

General global integer optimization is a difficult and slow problem, and any
effective IA algorithm must exploit the problem structure. A key feature of
all the constraints is that they can be described using a linear equation; that
is, if xi is the number of intervals assigned to the ith curve (or virtual curve,
etc.), then the equation describing the constraint only contains xi raised to the
first power, with no x2

i terms, etc. Linear constraints are the simplest in opti-
mization. We write Ax = b; equality and inequality constraints are equivalent
using standard conversions, such as slack variables, or requiring both Ax ≥ b
and Ax ≤ b. Every variable has upper and lower bounds, perhaps infinite.
Interval variables must be integer and positive, in the natural numbers N.
Integer variables are identified by an indicator set I. There may be additional
variables, perhaps for computing intermediate quantities not apparent in the
model; for conciseness we also denote these by x. An important example of
this is for unstructured quad meshing schemes, such as paving, where the sum
of intervals around any set of bounding curves must be even. We constrain
2xj =

�
b∈bdy xb, and require xj to be an integer. Any assignment satisfying

these constraints is feasible. Removing the requirements for integrality defines
the relaxed problem. A feasible solution to it is a useful step towards an integer
solution.

We have an idea of the number of intervals we would like for each curve,
the goals. These may come from a sizing function: e.g. edges about length 4,
so a curve of length 10 has a goal of 2.5 intervals. Or the user may specify
the number directly, such as “at least ten edges through the thickness for
accuracy in weld simulations.” We assume goals are constant throughout IA.
There may be no feasible solution satisfying all the goals. We measure the
deviation of the achieved interval xi from its goal gi. We have some objective

function f(x, g) of the deviations, where f(x) = 0 if all the deviations are
zero, and f(x) > 0 otherwise. IA in standard form is

min f(x)

s.t. Ax = b

xI ∈ N
l ≤ x ≤ u.

(1)

Benefits of Linear Constraints
•  Feasible region (space of solutions) is convex (possibly unbounded)

we have efficient solution algorithms (especially for linear objective)

2 Scott A. Mitchell

IA in some form is required for all quad and hex meshing. The prob-
lem is surprisingly difficult. The requirements are easily described locally, but
surfaces sharing common curves create dependencies that make IA a global
problem. A good algorithm is important. A greedy strategy of assigning in-
tervals for one surface, then for another surface, can fail by “painting yourself
into a corner.” Solving the global problem using standard optimization tech-
niques is difficult because IA requires an integer number of intervals. That is,
mesh nodes are discrete quantities dividing curves into a discrete number of
mesh edges. Half of an edge makes no sense.

Optimization and Linear Constraints

General global integer optimization is a difficult and slow problem, and any
effective IA algorithm must exploit the problem structure. A key feature of
all the constraints is that they can be described using a linear equation; that
is, if xi is the number of intervals assigned to the ith curve (or virtual curve,
etc.), then the equation describing the constraint only contains xi raised to the
first power, with no x2

i terms, etc. Linear constraints are the simplest in opti-
mization. We write Ax = b; equality and inequality constraints are equivalent
using standard conversions, such as slack variables, or requiring both Ax ≥ b
and Ax ≤ b. Every variable has upper and lower bounds, perhaps infinite.
Interval variables must be integer and positive, in the natural numbers N.
Integer variables are identified by an indicator set I. There may be additional
variables, perhaps for computing intermediate quantities not apparent in the
model; for conciseness we also denote these by x. An important example of
this is for unstructured quad meshing schemes, such as paving, where the sum
of intervals around any set of bounding curves must be even. We constrain
2xj =

�
b∈bdy xb, and require xj to be an integer. Any assignment satisfying

these constraints is feasible. Removing the requirements for integrality defines
the relaxed problem. A feasible solution to it is a useful step towards an integer
solution.

We have an idea of the number of intervals we would like for each curve,
the goals. These may come from a sizing function: e.g. edges about length 4,
so a curve of length 10 has a goal of 2.5 intervals. Or the user may specify
the number directly, such as “at least ten edges through the thickness for
accuracy in weld simulations.” We assume goals are constant throughout IA.
There may be no feasible solution satisfying all the goals. We measure the
deviation of the achieved interval xi from its goal gi. We have some objective

function f(x, g) of the deviations, where f(x) = 0 if all the deviations are
zero, and f(x) > 0 otherwise. IA in standard form is

min f(x)

s.t. Ax = b

xI ∈ N
l ≤ x ≤ u.

(1)f’	

x*	

–  Not so easy for integer solutions

2v nearby integer	

points. v=#curves	

Benefits of Linear Constraints
•  Feasible region (space of solutions) is convex (possibly unbounded)

we have efficient solution algorithms (especially for linear objective)

2 Scott A. Mitchell

IA in some form is required for all quad and hex meshing. The prob-
lem is surprisingly difficult. The requirements are easily described locally, but
surfaces sharing common curves create dependencies that make IA a global
problem. A good algorithm is important. A greedy strategy of assigning in-
tervals for one surface, then for another surface, can fail by “painting yourself
into a corner.” Solving the global problem using standard optimization tech-
niques is difficult because IA requires an integer number of intervals. That is,
mesh nodes are discrete quantities dividing curves into a discrete number of
mesh edges. Half of an edge makes no sense.

Optimization and Linear Constraints

General global integer optimization is a difficult and slow problem, and any
effective IA algorithm must exploit the problem structure. A key feature of
all the constraints is that they can be described using a linear equation; that
is, if xi is the number of intervals assigned to the ith curve (or virtual curve,
etc.), then the equation describing the constraint only contains xi raised to the
first power, with no x2

i terms, etc. Linear constraints are the simplest in opti-
mization. We write Ax = b; equality and inequality constraints are equivalent
using standard conversions, such as slack variables, or requiring both Ax ≥ b
and Ax ≤ b. Every variable has upper and lower bounds, perhaps infinite.
Interval variables must be integer and positive, in the natural numbers N.
Integer variables are identified by an indicator set I. There may be additional
variables, perhaps for computing intermediate quantities not apparent in the
model; for conciseness we also denote these by x. An important example of
this is for unstructured quad meshing schemes, such as paving, where the sum
of intervals around any set of bounding curves must be even. We constrain
2xj =

�
b∈bdy xb, and require xj to be an integer. Any assignment satisfying

these constraints is feasible. Removing the requirements for integrality defines
the relaxed problem. A feasible solution to it is a useful step towards an integer
solution.

We have an idea of the number of intervals we would like for each curve,
the goals. These may come from a sizing function: e.g. edges about length 4,
so a curve of length 10 has a goal of 2.5 intervals. Or the user may specify
the number directly, such as “at least ten edges through the thickness for
accuracy in weld simulations.” We assume goals are constant throughout IA.
There may be no feasible solution satisfying all the goals. We measure the
deviation of the achieved interval xi from its goal gi. We have some objective

function f(x, g) of the deviations, where f(x) = 0 if all the deviations are
zero, and f(x) > 0 otherwise. IA in standard form is

min f(x)

s.t. Ax = b

xI ∈ N
l ≤ x ≤ u.

(1)f’	

x*	

–  Not so easy for integer solutions

2v nearby integer	

points. v=#curves	

Worse: nearby integer	

points could be infeasible ���
for general problems.���
But does not happen for IA:���
remember 1 coefficients!	

Benefits of Linear Constraints
•  Feasible region (space of solutions) is convex (possibly unbounded)

we have efficient solution algorithms (especially for linear objective)

2 Scott A. Mitchell

IA in some form is required for all quad and hex meshing. The prob-
lem is surprisingly difficult. The requirements are easily described locally, but
surfaces sharing common curves create dependencies that make IA a global
problem. A good algorithm is important. A greedy strategy of assigning in-
tervals for one surface, then for another surface, can fail by “painting yourself
into a corner.” Solving the global problem using standard optimization tech-
niques is difficult because IA requires an integer number of intervals. That is,
mesh nodes are discrete quantities dividing curves into a discrete number of
mesh edges. Half of an edge makes no sense.

Optimization and Linear Constraints

General global integer optimization is a difficult and slow problem, and any
effective IA algorithm must exploit the problem structure. A key feature of
all the constraints is that they can be described using a linear equation; that
is, if xi is the number of intervals assigned to the ith curve (or virtual curve,
etc.), then the equation describing the constraint only contains xi raised to the
first power, with no x2

i terms, etc. Linear constraints are the simplest in opti-
mization. We write Ax = b; equality and inequality constraints are equivalent
using standard conversions, such as slack variables, or requiring both Ax ≥ b
and Ax ≤ b. Every variable has upper and lower bounds, perhaps infinite.
Interval variables must be integer and positive, in the natural numbers N.
Integer variables are identified by an indicator set I. There may be additional
variables, perhaps for computing intermediate quantities not apparent in the
model; for conciseness we also denote these by x. An important example of
this is for unstructured quad meshing schemes, such as paving, where the sum
of intervals around any set of bounding curves must be even. We constrain
2xj =

�
b∈bdy xb, and require xj to be an integer. Any assignment satisfying

these constraints is feasible. Removing the requirements for integrality defines
the relaxed problem. A feasible solution to it is a useful step towards an integer
solution.

We have an idea of the number of intervals we would like for each curve,
the goals. These may come from a sizing function: e.g. edges about length 4,
so a curve of length 10 has a goal of 2.5 intervals. Or the user may specify
the number directly, such as “at least ten edges through the thickness for
accuracy in weld simulations.” We assume goals are constant throughout IA.
There may be no feasible solution satisfying all the goals. We measure the
deviation of the achieved interval xi from its goal gi. We have some objective

function f(x, g) of the deviations, where f(x) = 0 if all the deviations are
zero, and f(x) > 0 otherwise. IA in standard form is

min f(x)

s.t. Ax = b

xI ∈ N
l ≤ x ≤ u.

(1)f’	

x*	

–  Not so easy for integer solutions
–  Unless coefficients are cooperative!

Engineering Sciences Center

Infeasibility

For one surface, from hard-sets
• provable fallbacks

For collection of surfaces,
• open, NP-complete (Mohring et al)

a

baa
b b

a+b
a+b

a+b

a+b

a = a + b, b = 0,

Global Infeasibility

The global IA problem may be infeasible, meaning no solution exists,	

even when each surface can be meshed in isolation.	

Graphics has discovered quad meshes

Designing Quadrangulations with Discrete Harmonic Forms 	

Yiying Tong, Pierre Alliez, David Cohen-Steiner, and Mathieu Desbrun 	

ACM/EG Symposium on Geometry Processing 2006, pp. 201-210	

Integer-Grid Maps for Reliable Quad Meshing	

David Bommes, Marcel Campen, Hans-Christian
Ebke, Pierre Alliez, Leif Kobbelt	

SIGGRAPH 2013	

Disney Animation	

(Pixar uses triangles)	

Mostly structured quads	

on smooth curved surfaces	

Key issue is placement ���
 of irregular nodes	

State of the Art in Quad Meshing	

Eurographics STARS 2012	

Graphics has discovered quad meshes
including the need for interval assignment

Solved with mixed-integer linear-constraint optimization, series of problems	

The placement of irregular nodes is included in the optimization problems	

Mixed-Integer Quadrangulation.	

David Bommes, Henrik Zimmer, and Leif Kobbelt.	

ACM Trans. Graph. (TOG), 28(3):77:1–77:10, July 2009.	

commercial	

version	

Objectives: user specified sizes

•  Goal g for each interval
–  about g

•  each mesh edge should be
about 0.1 inches long

–  exactly g (not implemented currently)

•  I want exactly 8 intervals here
–  at least g

•  I need at least 6 here

•  Achieving all of these g, and constraints, may not be possible.
–  How do you measure deviations? Relative values?

 	

	

 Autodesk	

g = length / 0.1	

x ≈ g	

g = 6	

x ≥ g	

g = 8	

x = g	

What’s good about linear objectives?

• Optimal solutions occur at corners, easy to find.
–  if constraint coefficients cooperate, corners are

integer solutions. Integer solution for free!

2 Scott A. Mitchell

IA in some form is required for all quad and hex meshing. The prob-
lem is surprisingly difficult. The requirements are easily described locally, but
surfaces sharing common curves create dependencies that make IA a global
problem. A good algorithm is important. A greedy strategy of assigning in-
tervals for one surface, then for another surface, can fail by “painting yourself
into a corner.” Solving the global problem using standard optimization tech-
niques is difficult because IA requires an integer number of intervals. That is,
mesh nodes are discrete quantities dividing curves into a discrete number of
mesh edges. Half of an edge makes no sense.

Optimization and Linear Constraints

General global integer optimization is a difficult and slow problem, and any
effective IA algorithm must exploit the problem structure. A key feature of
all the constraints is that they can be described using a linear equation; that
is, if xi is the number of intervals assigned to the ith curve (or virtual curve,
etc.), then the equation describing the constraint only contains xi raised to the
first power, with no x2

i terms, etc. Linear constraints are the simplest in opti-
mization. We write Ax = b; equality and inequality constraints are equivalent
using standard conversions, such as slack variables, or requiring both Ax ≥ b
and Ax ≤ b. Every variable has upper and lower bounds, perhaps infinite.
Interval variables must be integer and positive, in the natural numbers N.
Integer variables are identified by an indicator set I. There may be additional
variables, perhaps for computing intermediate quantities not apparent in the
model; for conciseness we also denote these by x. An important example of
this is for unstructured quad meshing schemes, such as paving, where the sum
of intervals around any set of bounding curves must be even. We constrain
2xj =

�
b∈bdy xb, and require xj to be an integer. Any assignment satisfying

these constraints is feasible. Removing the requirements for integrality defines
the relaxed problem. A feasible solution to it is a useful step towards an integer
solution.

We have an idea of the number of intervals we would like for each curve,
the goals. These may come from a sizing function: e.g. edges about length 4,
so a curve of length 10 has a goal of 2.5 intervals. Or the user may specify
the number directly, such as “at least ten edges through the thickness for
accuracy in weld simulations.” We assume goals are constant throughout IA.
There may be no feasible solution satisfying all the goals. We measure the
deviation of the achieved interval xi from its goal gi. We have some objective

function f(x, g) of the deviations, where f(x) = 0 if all the deviations are
zero, and f(x) > 0 otherwise. IA in standard form is

min f(x)

s.t. Ax = b

xI ∈ N
l ≤ x ≤ u.

(1)f’	

x*	

What’s wrong with linear objectives?

• All the deviations are concentrated
–  L1 minimization leads to sparsity in the solution
–  not a big deal if deviations are small
–  could be a big deal if deviations are large

Soft-set curves correspond to variables xi. Hard-set curves contribute to the value of the right hand side of the
constraints. Additional “sum-even” k variables (xj) are used to enforce that certain sums are even. Since a curve must
have at least one interval, a lower bound l of 1 is set for each curve variable, and a lower bound of 2 or 3 is set for each
“sum-even” variable. Constraints correspond to rows of A or D. The objective function is c. See Section 3.1 for a small
example.

We use the library LP Solve[7] to represent and solve MILPs. LP Solve uses a sparse matrix implementation, which
is essential for efficiency because the interval assignment problem is sparse; each curve bounds only a few surfaces.

2.3 Objective Function Goals and Prior Approaches
Setting up the constraints presented in Section 2.2 and solving the MILP is technically sufficient to “solve” the interval
assignment problem, in that it would be possible to mesh all of the surfaces according to their schemes and corners,
and hard-set intervals would be respected. However, the assigned intervals for soft-set curves would be arbitrarily far
from the goals. Also, depending on the objective function, without good bounds on the integer variables the MILP
might take exponential time to solve. Our objective is to craft an objective function that leads to a solution where

• the intervals for each curve is close to its specified goal.

The objective function in Tam and Armstrong[3] is to minimize the weighted sum of the deltas, where a delta is the
absolute value of an interval deviation from the goal G. Note |x-G| is a non-linear function, but it is a standard trick of
linear programming to compute it using a sum of two variables, |x-G| = D + d, by using the constraints D ! x-Gand
d ! "x+G, where D, d ! 0. More succinctly we constrain

and in effect minimize D + d so that only one of D or d will be non-zero.

In Tam and Armstrong[3] and our work, the delta weights are chosen so that curves with smaller goals have larger
weight. This reflects the fact that a one-interval change in a small curve is a larger relative change than in a long curve.
Also, we chose a smaller weight W for D, increasing intervals, than w for d, decreasing intervals. This again reflects
relative change. How much smaller W is than w depends on the initial goal. In particular, we use weights W and w
approximately 1/G and 1.2/(G - 1).

The strategy of minimizing the sum of the weighted deltas fails to meet our bulleted objective if a simplex-based[4]
linear program solver is used and large deltas occur. Since the simplex method chooses among vertices of the feasible
polyhedra, all of the change usually gets assigned to one curve of a side; see Figure 1. Large deltas might be avoided
in some cases by adjusting the goals before setting up the MILP, but doing this reliably is a global problem equivalent
to interval assignment.

Quadratic programming might meet the bulleted objective by minimizing the sum of the weighted deltas squared.
(Actually, one would like to minimize something like the sum over all edges e of the relative change in interval size,

Figure 1. Given the goals on the left, we prefer our solution to those on the right. If a simplex method is used in conjunction
with minimizing the weighted sum of interval changes, then, depending on the exact weighting, either Simplex A or Sim-
plex B will be the solution.

9

9

10

1

9

10

9

9

18Goals Simplex A Simplex B

7

7

14Our solution

D d– x G–= D d 0!,

min sum f(xi,gi)	

f ≈ (gi/xi) 3 + (xi/gi) 3 	

g1 = 9	

g2 = 9	

g3 = 18	

x1 = g1 - n1	

x2 = g2 - n2	

x3 = g3 + p3	

Linear Objectives	

min sum w1n1 + w2n2 + w3p3	

w3 > w1 = w2	

no x1 x2 tradeoff	

for most solvers	

w3 < w1 = w2	

x1	

x3	

x2	

or 	

	

lex min max (w1n1, w2n2, w3p3)	

Non-Linear Objectives	

My Solutions
to spread out deviations

•  1997 Lexicographic min max

solve series of linear programs, one per variable = slow.
–  Minimize maximum xi-gi. Fix that xi at a nearby integer value,

check feasibility, remove it from equations.
•  minimize maximum remaining xi-gi, repeat

–  Weighted deviations, relative size
•  min max pi(xi-gi >0) + ni(gi - xi >0),

where pi = 1/gi ni = 1.3/gi

–  i.e. assigning x=10 for g=5, is as bad as x=20 for g=10

•  Today, cubic objective (L3)
–  A small series of nearby problems to get integer
–  About the same solution as lex min max,

depending on problem size
•  L∞vs. L3 norm

Soft-set curves correspond to variables xi. Hard-set curves contribute to the value of the right hand side of the
constraints. Additional “sum-even” k variables (xj) are used to enforce that certain sums are even. Since a curve must
have at least one interval, a lower bound l of 1 is set for each curve variable, and a lower bound of 2 or 3 is set for each
“sum-even” variable. Constraints correspond to rows of A or D. The objective function is c. See Section 3.1 for a small
example.

We use the library LP Solve[7] to represent and solve MILPs. LP Solve uses a sparse matrix implementation, which
is essential for efficiency because the interval assignment problem is sparse; each curve bounds only a few surfaces.

2.3 Objective Function Goals and Prior Approaches
Setting up the constraints presented in Section 2.2 and solving the MILP is technically sufficient to “solve” the interval
assignment problem, in that it would be possible to mesh all of the surfaces according to their schemes and corners,
and hard-set intervals would be respected. However, the assigned intervals for soft-set curves would be arbitrarily far
from the goals. Also, depending on the objective function, without good bounds on the integer variables the MILP
might take exponential time to solve. Our objective is to craft an objective function that leads to a solution where

• the intervals for each curve is close to its specified goal.

The objective function in Tam and Armstrong[3] is to minimize the weighted sum of the deltas, where a delta is the
absolute value of an interval deviation from the goal G. Note |x-G| is a non-linear function, but it is a standard trick of
linear programming to compute it using a sum of two variables, |x-G| = D + d, by using the constraints D ! x-Gand
d ! "x+G, where D, d ! 0. More succinctly we constrain

and in effect minimize D + d so that only one of D or d will be non-zero.

In Tam and Armstrong[3] and our work, the delta weights are chosen so that curves with smaller goals have larger
weight. This reflects the fact that a one-interval change in a small curve is a larger relative change than in a long curve.
Also, we chose a smaller weight W for D, increasing intervals, than w for d, decreasing intervals. This again reflects
relative change. How much smaller W is than w depends on the initial goal. In particular, we use weights W and w
approximately 1/G and 1.2/(G - 1).

The strategy of minimizing the sum of the weighted deltas fails to meet our bulleted objective if a simplex-based[4]
linear program solver is used and large deltas occur. Since the simplex method chooses among vertices of the feasible
polyhedra, all of the change usually gets assigned to one curve of a side; see Figure 1. Large deltas might be avoided
in some cases by adjusting the goals before setting up the MILP, but doing this reliably is a global problem equivalent
to interval assignment.

Quadratic programming might meet the bulleted objective by minimizing the sum of the weighted deltas squared.
(Actually, one would like to minimize something like the sum over all edges e of the relative change in interval size,

Figure 1. Given the goals on the left, we prefer our solution to those on the right. If a simplex method is used in conjunction
with minimizing the weighted sum of interval changes, then, depending on the exact weighting, either Simplex A or Sim-
plex B will be the solution.

9

9

10

1

9

10

9

9

18Goals Simplex A Simplex B

7

7

14Our solution

D d– x G–= D d 0!,

min sum f(xi,gi)	

f ≈ (gi/xi) 3 + (xi/gi) 3 	

lex min max (w1n1, w2n2, w3p3)	

Cubic Objective
Cubic-objective.pdf

g 1 3 2 5 4 7 6 9 8

(g/x – 1)3 (x/g – 1)3

x(r)

x

Good: directly measures relative change, (g->x: 4->8 is as bad as 4->2)	

Good: no lexicographic min max, single optimization solve spreads deviations	

Good: convex objective (plus convex constraints)���
 local optimum is the global optimum	

Bad: non-linear objective requires slower algorithms than a linear one,���
 but the difference is less today than in 1997	

Cubic Objective Solution

Non-integer solution usually	

Soft-set curves correspond to variables xi. Hard-set curves contribute to the value of the right hand side of the
constraints. Additional “sum-even” k variables (xj) are used to enforce that certain sums are even. Since a curve must
have at least one interval, a lower bound l of 1 is set for each curve variable, and a lower bound of 2 or 3 is set for each
“sum-even” variable. Constraints correspond to rows of A or D. The objective function is c. See Section 3.1 for a small
example.

We use the library LP Solve[7] to represent and solve MILPs. LP Solve uses a sparse matrix implementation, which
is essential for efficiency because the interval assignment problem is sparse; each curve bounds only a few surfaces.

2.3 Objective Function Goals and Prior Approaches
Setting up the constraints presented in Section 2.2 and solving the MILP is technically sufficient to “solve” the interval
assignment problem, in that it would be possible to mesh all of the surfaces according to their schemes and corners,
and hard-set intervals would be respected. However, the assigned intervals for soft-set curves would be arbitrarily far
from the goals. Also, depending on the objective function, without good bounds on the integer variables the MILP
might take exponential time to solve. Our objective is to craft an objective function that leads to a solution where

• the intervals for each curve is close to its specified goal.

The objective function in Tam and Armstrong[3] is to minimize the weighted sum of the deltas, where a delta is the
absolute value of an interval deviation from the goal G. Note |x-G| is a non-linear function, but it is a standard trick of
linear programming to compute it using a sum of two variables, |x-G| = D + d, by using the constraints D ! x-Gand
d ! "x+G, where D, d ! 0. More succinctly we constrain

and in effect minimize D + d so that only one of D or d will be non-zero.

In Tam and Armstrong[3] and our work, the delta weights are chosen so that curves with smaller goals have larger
weight. This reflects the fact that a one-interval change in a small curve is a larger relative change than in a long curve.
Also, we chose a smaller weight W for D, increasing intervals, than w for d, decreasing intervals. This again reflects
relative change. How much smaller W is than w depends on the initial goal. In particular, we use weights W and w
approximately 1/G and 1.2/(G - 1).

The strategy of minimizing the sum of the weighted deltas fails to meet our bulleted objective if a simplex-based[4]
linear program solver is used and large deltas occur. Since the simplex method chooses among vertices of the feasible
polyhedra, all of the change usually gets assigned to one curve of a side; see Figure 1. Large deltas might be avoided
in some cases by adjusting the goals before setting up the MILP, but doing this reliably is a global problem equivalent
to interval assignment.

Quadratic programming might meet the bulleted objective by minimizing the sum of the weighted deltas squared.
(Actually, one would like to minimize something like the sum over all edges e of the relative change in interval size,

Figure 1. Given the goals on the left, we prefer our solution to those on the right. If a simplex method is used in conjunction
with minimizing the weighted sum of interval changes, then, depending on the exact weighting, either Simplex A or Sim-
plex B will be the solution.

9

9

10

1

9

10

9

9

18Goals Simplex A Simplex B

7

7

14Our solution

D d– x G–= D d 0!,

4.5	

4.5	

19	

min sum f(xi,gi)	

f = (gi/xi-1) 3 or (xi/gi-1) 3 	

min F = (x1/4.5 - 1) 3 + (x1/4.5 - 1) 3 + (19/x3-1) 3 	

minimum when F’ = 0 (or extremes xi=1, etc.)	

sum of slopes = 0	

Cubic-objective.pdf

g 1 3 2 5 4 7 6 9 8

(g/x – 1)3 (x/g – 1)3

x(r)

x

Cubic-objective.pdf

g 1 3 2 5 4 7 6 9 8

(g/x – 1)3 (x/g – 1)3

x(r)

x

Cubic-objective.pdf

g 1 3 2 5 4 7 6 9 8

(g/x – 1)3 (x/g – 1)3

x(r)

x

19	

12.8	

6.4	

6.4	

(later problem definitions fix)	

Soft-set curves correspond to variables xi. Hard-set curves contribute to the value of the right hand side of the
constraints. Additional “sum-even” k variables (xj) are used to enforce that certain sums are even. Since a curve must
have at least one interval, a lower bound l of 1 is set for each curve variable, and a lower bound of 2 or 3 is set for each
“sum-even” variable. Constraints correspond to rows of A or D. The objective function is c. See Section 3.1 for a small
example.

We use the library LP Solve[7] to represent and solve MILPs. LP Solve uses a sparse matrix implementation, which
is essential for efficiency because the interval assignment problem is sparse; each curve bounds only a few surfaces.

2.3 Objective Function Goals and Prior Approaches
Setting up the constraints presented in Section 2.2 and solving the MILP is technically sufficient to “solve” the interval
assignment problem, in that it would be possible to mesh all of the surfaces according to their schemes and corners,
and hard-set intervals would be respected. However, the assigned intervals for soft-set curves would be arbitrarily far
from the goals. Also, depending on the objective function, without good bounds on the integer variables the MILP
might take exponential time to solve. Our objective is to craft an objective function that leads to a solution where

• the intervals for each curve is close to its specified goal.

The objective function in Tam and Armstrong[3] is to minimize the weighted sum of the deltas, where a delta is the
absolute value of an interval deviation from the goal G. Note |x-G| is a non-linear function, but it is a standard trick of
linear programming to compute it using a sum of two variables, |x-G| = D + d, by using the constraints D ! x-Gand
d ! "x+G, where D, d ! 0. More succinctly we constrain

and in effect minimize D + d so that only one of D or d will be non-zero.

In Tam and Armstrong[3] and our work, the delta weights are chosen so that curves with smaller goals have larger
weight. This reflects the fact that a one-interval change in a small curve is a larger relative change than in a long curve.
Also, we chose a smaller weight W for D, increasing intervals, than w for d, decreasing intervals. This again reflects
relative change. How much smaller W is than w depends on the initial goal. In particular, we use weights W and w
approximately 1/G and 1.2/(G - 1).

The strategy of minimizing the sum of the weighted deltas fails to meet our bulleted objective if a simplex-based[4]
linear program solver is used and large deltas occur. Since the simplex method chooses among vertices of the feasible
polyhedra, all of the change usually gets assigned to one curve of a side; see Figure 1. Large deltas might be avoided
in some cases by adjusting the goals before setting up the MILP, but doing this reliably is a global problem equivalent
to interval assignment.

Quadratic programming might meet the bulleted objective by minimizing the sum of the weighted deltas squared.
(Actually, one would like to minimize something like the sum over all edges e of the relative change in interval size,

Figure 1. Given the goals on the left, we prefer our solution to those on the right. If a simplex method is used in conjunction
with minimizing the weighted sum of interval changes, then, depending on the exact weighting, either Simplex A or Sim-
plex B will be the solution.

9

9

10

1

9

10

9

9

18Goals Simplex A Simplex B

7

7

14Our solution

D d– x G–= D d 0!,

6.4	

6.4	

12.8	

relaxed	

I have spread out the 	

deviations, made the major 	

compromises	

Piecewise Linear Objective

linearized-objective.pdf

g 1 3 2 5 4 7 6 9 8

(g/x – 1)3 (x/g – 1)3

o
o

o

o

o
o

o

o

o
full piecewise linear objective

Good: restores integer solutions for free (often)	

Bad: explicit variable for every single unit interval = expensive time, memory	

Bend at integer points <-> corner at every integer ���
	

 	

 in the higher-dimensional linear problem ���
	

 	

 	

 where each unit interval is a dimension.	

Adaptive Piecewise Linear Objective

For efficiency, just add the bends (pieces) as needed	

1

bend-A.pdf

x

g 3 2 5 4 7 6 9 8

x(i0)

x

o

o o

p1
p2 m1

1

bend-A2a.pdf

x

g 3 2 5 4 7 6 9 8

x(i1) x

o
o

x
p1

p2 m1

p3

o

o

1 2

bend-A1.pdf

x

g 3 5 4 7 6 9 8

x(i0)

x
o

o
o

Soft-set curves correspond to variables xi. Hard-set curves contribute to the value of the right hand side of the
constraints. Additional “sum-even” k variables (xj) are used to enforce that certain sums are even. Since a curve must
have at least one interval, a lower bound l of 1 is set for each curve variable, and a lower bound of 2 or 3 is set for each
“sum-even” variable. Constraints correspond to rows of A or D. The objective function is c. See Section 3.1 for a small
example.

We use the library LP Solve[7] to represent and solve MILPs. LP Solve uses a sparse matrix implementation, which
is essential for efficiency because the interval assignment problem is sparse; each curve bounds only a few surfaces.

2.3 Objective Function Goals and Prior Approaches
Setting up the constraints presented in Section 2.2 and solving the MILP is technically sufficient to “solve” the interval
assignment problem, in that it would be possible to mesh all of the surfaces according to their schemes and corners,
and hard-set intervals would be respected. However, the assigned intervals for soft-set curves would be arbitrarily far
from the goals. Also, depending on the objective function, without good bounds on the integer variables the MILP
might take exponential time to solve. Our objective is to craft an objective function that leads to a solution where

• the intervals for each curve is close to its specified goal.

The objective function in Tam and Armstrong[3] is to minimize the weighted sum of the deltas, where a delta is the
absolute value of an interval deviation from the goal G. Note |x-G| is a non-linear function, but it is a standard trick of
linear programming to compute it using a sum of two variables, |x-G| = D + d, by using the constraints D ! x-Gand
d ! "x+G, where D, d ! 0. More succinctly we constrain

and in effect minimize D + d so that only one of D or d will be non-zero.

In Tam and Armstrong[3] and our work, the delta weights are chosen so that curves with smaller goals have larger
weight. This reflects the fact that a one-interval change in a small curve is a larger relative change than in a long curve.
Also, we chose a smaller weight W for D, increasing intervals, than w for d, decreasing intervals. This again reflects
relative change. How much smaller W is than w depends on the initial goal. In particular, we use weights W and w
approximately 1/G and 1.2/(G - 1).

The strategy of minimizing the sum of the weighted deltas fails to meet our bulleted objective if a simplex-based[4]
linear program solver is used and large deltas occur. Since the simplex method chooses among vertices of the feasible
polyhedra, all of the change usually gets assigned to one curve of a side; see Figure 1. Large deltas might be avoided
in some cases by adjusting the goals before setting up the MILP, but doing this reliably is a global problem equivalent
to interval assignment.

Quadratic programming might meet the bulleted objective by minimizing the sum of the weighted deltas squared.
(Actually, one would like to minimize something like the sum over all edges e of the relative change in interval size,

Figure 1. Given the goals on the left, we prefer our solution to those on the right. If a simplex method is used in conjunction
with minimizing the weighted sum of interval changes, then, depending on the exact weighting, either Simplex A or Sim-
plex B will be the solution.

9

9

10

1

9

10

9

9

18Goals Simplex A Simplex B

7

7

14Our solution

D d– x G–= D d 0!,

4.5	

4.5	

19	

Soft-set curves correspond to variables xi. Hard-set curves contribute to the value of the right hand side of the
constraints. Additional “sum-even” k variables (xj) are used to enforce that certain sums are even. Since a curve must
have at least one interval, a lower bound l of 1 is set for each curve variable, and a lower bound of 2 or 3 is set for each
“sum-even” variable. Constraints correspond to rows of A or D. The objective function is c. See Section 3.1 for a small
example.

We use the library LP Solve[7] to represent and solve MILPs. LP Solve uses a sparse matrix implementation, which
is essential for efficiency because the interval assignment problem is sparse; each curve bounds only a few surfaces.

2.3 Objective Function Goals and Prior Approaches
Setting up the constraints presented in Section 2.2 and solving the MILP is technically sufficient to “solve” the interval
assignment problem, in that it would be possible to mesh all of the surfaces according to their schemes and corners,
and hard-set intervals would be respected. However, the assigned intervals for soft-set curves would be arbitrarily far
from the goals. Also, depending on the objective function, without good bounds on the integer variables the MILP
might take exponential time to solve. Our objective is to craft an objective function that leads to a solution where

• the intervals for each curve is close to its specified goal.

The objective function in Tam and Armstrong[3] is to minimize the weighted sum of the deltas, where a delta is the
absolute value of an interval deviation from the goal G. Note |x-G| is a non-linear function, but it is a standard trick of
linear programming to compute it using a sum of two variables, |x-G| = D + d, by using the constraints D ! x-Gand
d ! "x+G, where D, d ! 0. More succinctly we constrain

and in effect minimize D + d so that only one of D or d will be non-zero.

In Tam and Armstrong[3] and our work, the delta weights are chosen so that curves with smaller goals have larger
weight. This reflects the fact that a one-interval change in a small curve is a larger relative change than in a long curve.
Also, we chose a smaller weight W for D, increasing intervals, than w for d, decreasing intervals. This again reflects
relative change. How much smaller W is than w depends on the initial goal. In particular, we use weights W and w
approximately 1/G and 1.2/(G - 1).

The strategy of minimizing the sum of the weighted deltas fails to meet our bulleted objective if a simplex-based[4]
linear program solver is used and large deltas occur. Since the simplex method chooses among vertices of the feasible
polyhedra, all of the change usually gets assigned to one curve of a side; see Figure 1. Large deltas might be avoided
in some cases by adjusting the goals before setting up the MILP, but doing this reliably is a global problem equivalent
to interval assignment.

Quadratic programming might meet the bulleted objective by minimizing the sum of the weighted deltas squared.
(Actually, one would like to minimize something like the sum over all edges e of the relative change in interval size,

Figure 1. Given the goals on the left, we prefer our solution to those on the right. If a simplex method is used in conjunction
with minimizing the weighted sum of interval changes, then, depending on the exact weighting, either Simplex A or Sim-
plex B will be the solution.

9

9

10

1

9

10

9

9

18Goals Simplex A Simplex B

7

7

14Our solution

D d– x G–= D d 0!,

6.4	

6.4	

12.8	

relaxed	

Delta variable for each interval [k,k+1]	

linear slope = weight = f(k+1) – f(k) 	

Create three intervals:���
 around relaxed x*, beyond it, below it	

	

Solve min sum weighted deltas (linear)	

Add more deltas if solution beyond k+1, repeat	

*Notional. For the problem on the left the solution is 6,6,12.	

A long chain of surfaces from the long curve might lead to the behavior on the left column.	

Adaptive Piecewise Linear Objective

Add the bends (pieces) as needed	

	

Start with two bends, so relaxed solution is in a trough	

to avoid unbounded solutions right away	

bend-B.pdf

g 1 3 2 5 4 7 6 9 8

x(r)

x
o

o o
p1 m1 x(i0)

x

bend-B2.pdf

g 1 3 2 5 4 7 6 9 8
x

o
o o

x(i1)

x x o
o

Tilt to Break Non-integer Ties
Break non-integer ties by tweaking the weights (of the deltas), ���
an additive factor to the slope of the objective.	

 Randomization helps avoid cases where, say, many variables to the right���
 gang up to motivate a non-integer solution on the left.	

Scaling heuristics needed when goals or deviations vary widely,	

 else small goal variables are left at non-integer values.	

 Numerical tolerance issue with solvers	

tilts-bigfont.pdf

g 1 3 2 5 4 7 6 9 8

tilted objective

e.g.	

Soft-set curves correspond to variables xi. Hard-set curves contribute to the value of the right hand side of the
constraints. Additional “sum-even” k variables (xj) are used to enforce that certain sums are even. Since a curve must
have at least one interval, a lower bound l of 1 is set for each curve variable, and a lower bound of 2 or 3 is set for each
“sum-even” variable. Constraints correspond to rows of A or D. The objective function is c. See Section 3.1 for a small
example.

We use the library LP Solve[7] to represent and solve MILPs. LP Solve uses a sparse matrix implementation, which
is essential for efficiency because the interval assignment problem is sparse; each curve bounds only a few surfaces.

2.3 Objective Function Goals and Prior Approaches
Setting up the constraints presented in Section 2.2 and solving the MILP is technically sufficient to “solve” the interval
assignment problem, in that it would be possible to mesh all of the surfaces according to their schemes and corners,
and hard-set intervals would be respected. However, the assigned intervals for soft-set curves would be arbitrarily far
from the goals. Also, depending on the objective function, without good bounds on the integer variables the MILP
might take exponential time to solve. Our objective is to craft an objective function that leads to a solution where

• the intervals for each curve is close to its specified goal.

The objective function in Tam and Armstrong[3] is to minimize the weighted sum of the deltas, where a delta is the
absolute value of an interval deviation from the goal G. Note |x-G| is a non-linear function, but it is a standard trick of
linear programming to compute it using a sum of two variables, |x-G| = D + d, by using the constraints D ! x-Gand
d ! "x+G, where D, d ! 0. More succinctly we constrain

and in effect minimize D + d so that only one of D or d will be non-zero.

In Tam and Armstrong[3] and our work, the delta weights are chosen so that curves with smaller goals have larger
weight. This reflects the fact that a one-interval change in a small curve is a larger relative change than in a long curve.
Also, we chose a smaller weight W for D, increasing intervals, than w for d, decreasing intervals. This again reflects
relative change. How much smaller W is than w depends on the initial goal. In particular, we use weights W and w
approximately 1/G and 1.2/(G - 1).

The strategy of minimizing the sum of the weighted deltas fails to meet our bulleted objective if a simplex-based[4]
linear program solver is used and large deltas occur. Since the simplex method chooses among vertices of the feasible
polyhedra, all of the change usually gets assigned to one curve of a side; see Figure 1. Large deltas might be avoided
in some cases by adjusting the goals before setting up the MILP, but doing this reliably is a global problem equivalent
to interval assignment.

Quadratic programming might meet the bulleted objective by minimizing the sum of the weighted deltas squared.
(Actually, one would like to minimize something like the sum over all edges e of the relative change in interval size,

Figure 1. Given the goals on the left, we prefer our solution to those on the right. If a simplex method is used in conjunction
with minimizing the weighted sum of interval changes, then, depending on the exact weighting, either Simplex A or Sim-
plex B will be the solution.

9

9

10

1

9

10

9

9

18Goals Simplex A Simplex B

7

7

14Our solution

D d– x G–= D d 0!,

6.4	

6.4	

12.8	

relaxed	

Soft-set curves correspond to variables xi. Hard-set curves contribute to the value of the right hand side of the
constraints. Additional “sum-even” k variables (xj) are used to enforce that certain sums are even. Since a curve must
have at least one interval, a lower bound l of 1 is set for each curve variable, and a lower bound of 2 or 3 is set for each
“sum-even” variable. Constraints correspond to rows of A or D. The objective function is c. See Section 3.1 for a small
example.

We use the library LP Solve[7] to represent and solve MILPs. LP Solve uses a sparse matrix implementation, which
is essential for efficiency because the interval assignment problem is sparse; each curve bounds only a few surfaces.

2.3 Objective Function Goals and Prior Approaches
Setting up the constraints presented in Section 2.2 and solving the MILP is technically sufficient to “solve” the interval
assignment problem, in that it would be possible to mesh all of the surfaces according to their schemes and corners,
and hard-set intervals would be respected. However, the assigned intervals for soft-set curves would be arbitrarily far
from the goals. Also, depending on the objective function, without good bounds on the integer variables the MILP
might take exponential time to solve. Our objective is to craft an objective function that leads to a solution where

• the intervals for each curve is close to its specified goal.

The objective function in Tam and Armstrong[3] is to minimize the weighted sum of the deltas, where a delta is the
absolute value of an interval deviation from the goal G. Note |x-G| is a non-linear function, but it is a standard trick of
linear programming to compute it using a sum of two variables, |x-G| = D + d, by using the constraints D ! x-Gand
d ! "x+G, where D, d ! 0. More succinctly we constrain

and in effect minimize D + d so that only one of D or d will be non-zero.

In Tam and Armstrong[3] and our work, the delta weights are chosen so that curves with smaller goals have larger
weight. This reflects the fact that a one-interval change in a small curve is a larger relative change than in a long curve.
Also, we chose a smaller weight W for D, increasing intervals, than w for d, decreasing intervals. This again reflects
relative change. How much smaller W is than w depends on the initial goal. In particular, we use weights W and w
approximately 1/G and 1.2/(G - 1).

The strategy of minimizing the sum of the weighted deltas fails to meet our bulleted objective if a simplex-based[4]
linear program solver is used and large deltas occur. Since the simplex method chooses among vertices of the feasible
polyhedra, all of the change usually gets assigned to one curve of a side; see Figure 1. Large deltas might be avoided
in some cases by adjusting the goals before setting up the MILP, but doing this reliably is a global problem equivalent
to interval assignment.

Quadratic programming might meet the bulleted objective by minimizing the sum of the weighted deltas squared.
(Actually, one would like to minimize something like the sum over all edges e of the relative change in interval size,

Figure 1. Given the goals on the left, we prefer our solution to those on the right. If a simplex method is used in conjunction
with minimizing the weighted sum of interval changes, then, depending on the exact weighting, either Simplex A or Sim-
plex B will be the solution.

9

9

10

1

9

10

9

9

18Goals Simplex A Simplex B

7

7

14Our solution

D d– x G–= D d 0!,

6.5	

6.5	

13	

no tilts	

Soft-set curves correspond to variables xi. Hard-set curves contribute to the value of the right hand side of the
constraints. Additional “sum-even” k variables (xj) are used to enforce that certain sums are even. Since a curve must
have at least one interval, a lower bound l of 1 is set for each curve variable, and a lower bound of 2 or 3 is set for each
“sum-even” variable. Constraints correspond to rows of A or D. The objective function is c. See Section 3.1 for a small
example.

We use the library LP Solve[7] to represent and solve MILPs. LP Solve uses a sparse matrix implementation, which
is essential for efficiency because the interval assignment problem is sparse; each curve bounds only a few surfaces.

2.3 Objective Function Goals and Prior Approaches
Setting up the constraints presented in Section 2.2 and solving the MILP is technically sufficient to “solve” the interval
assignment problem, in that it would be possible to mesh all of the surfaces according to their schemes and corners,
and hard-set intervals would be respected. However, the assigned intervals for soft-set curves would be arbitrarily far
from the goals. Also, depending on the objective function, without good bounds on the integer variables the MILP
might take exponential time to solve. Our objective is to craft an objective function that leads to a solution where

• the intervals for each curve is close to its specified goal.

The objective function in Tam and Armstrong[3] is to minimize the weighted sum of the deltas, where a delta is the
absolute value of an interval deviation from the goal G. Note |x-G| is a non-linear function, but it is a standard trick of
linear programming to compute it using a sum of two variables, |x-G| = D + d, by using the constraints D ! x-Gand
d ! "x+G, where D, d ! 0. More succinctly we constrain

and in effect minimize D + d so that only one of D or d will be non-zero.

In Tam and Armstrong[3] and our work, the delta weights are chosen so that curves with smaller goals have larger
weight. This reflects the fact that a one-interval change in a small curve is a larger relative change than in a long curve.
Also, we chose a smaller weight W for D, increasing intervals, than w for d, decreasing intervals. This again reflects
relative change. How much smaller W is than w depends on the initial goal. In particular, we use weights W and w
approximately 1/G and 1.2/(G - 1).

The strategy of minimizing the sum of the weighted deltas fails to meet our bulleted objective if a simplex-based[4]
linear program solver is used and large deltas occur. Since the simplex method chooses among vertices of the feasible
polyhedra, all of the change usually gets assigned to one curve of a side; see Figure 1. Large deltas might be avoided
in some cases by adjusting the goals before setting up the MILP, but doing this reliably is a global problem equivalent
to interval assignment.

Quadratic programming might meet the bulleted objective by minimizing the sum of the weighted deltas squared.
(Actually, one would like to minimize something like the sum over all edges e of the relative change in interval size,

Figure 1. Given the goals on the left, we prefer our solution to those on the right. If a simplex method is used in conjunction
with minimizing the weighted sum of interval changes, then, depending on the exact weighting, either Simplex A or Sim-
plex B will be the solution.

9

9

10

1

9

10

9

9

18Goals Simplex A Simplex B

7

7

14Our solution

D d– x G–= D d 0!,

6	

6	

12	

after tilts	

=	

constraint	

Last Resort, Waves to Force Integrality

unstuck ½ (fractional) integer values	

1 3 2 5 4 7 6 9 8

(x-2)2 (x-4)2 (x-8)2 (x-6)2

wave-even.pdf

constrain g < 0.001	

g(x)	

x	

x=sum of edges, need an even number	

Better, in progress: bends and tilts for sum-even variables	

e.g.	

Soft-set curves correspond to variables xi. Hard-set curves contribute to the value of the right hand side of the
constraints. Additional “sum-even” k variables (xj) are used to enforce that certain sums are even. Since a curve must
have at least one interval, a lower bound l of 1 is set for each curve variable, and a lower bound of 2 or 3 is set for each
“sum-even” variable. Constraints correspond to rows of A or D. The objective function is c. See Section 3.1 for a small
example.

We use the library LP Solve[7] to represent and solve MILPs. LP Solve uses a sparse matrix implementation, which
is essential for efficiency because the interval assignment problem is sparse; each curve bounds only a few surfaces.

2.3 Objective Function Goals and Prior Approaches
Setting up the constraints presented in Section 2.2 and solving the MILP is technically sufficient to “solve” the interval
assignment problem, in that it would be possible to mesh all of the surfaces according to their schemes and corners,
and hard-set intervals would be respected. However, the assigned intervals for soft-set curves would be arbitrarily far
from the goals. Also, depending on the objective function, without good bounds on the integer variables the MILP
might take exponential time to solve. Our objective is to craft an objective function that leads to a solution where

• the intervals for each curve is close to its specified goal.

The objective function in Tam and Armstrong[3] is to minimize the weighted sum of the deltas, where a delta is the
absolute value of an interval deviation from the goal G. Note |x-G| is a non-linear function, but it is a standard trick of
linear programming to compute it using a sum of two variables, |x-G| = D + d, by using the constraints D ! x-Gand
d ! "x+G, where D, d ! 0. More succinctly we constrain

and in effect minimize D + d so that only one of D or d will be non-zero.

In Tam and Armstrong[3] and our work, the delta weights are chosen so that curves with smaller goals have larger
weight. This reflects the fact that a one-interval change in a small curve is a larger relative change than in a long curve.
Also, we chose a smaller weight W for D, increasing intervals, than w for d, decreasing intervals. This again reflects
relative change. How much smaller W is than w depends on the initial goal. In particular, we use weights W and w
approximately 1/G and 1.2/(G - 1).

The strategy of minimizing the sum of the weighted deltas fails to meet our bulleted objective if a simplex-based[4]
linear program solver is used and large deltas occur. Since the simplex method chooses among vertices of the feasible
polyhedra, all of the change usually gets assigned to one curve of a side; see Figure 1. Large deltas might be avoided
in some cases by adjusting the goals before setting up the MILP, but doing this reliably is a global problem equivalent
to interval assignment.

Quadratic programming might meet the bulleted objective by minimizing the sum of the weighted deltas squared.
(Actually, one would like to minimize something like the sum over all edges e of the relative change in interval size,

Figure 1. Given the goals on the left, we prefer our solution to those on the right. If a simplex method is used in conjunction
with minimizing the weighted sum of interval changes, then, depending on the exact weighting, either Simplex A or Sim-
plex B will be the solution.

9

9

10

1

9

10

9

9

18Goals Simplex A Simplex B

7

7

14Our solution

D d– x G–= D d 0!,

6.5	

6.5	

13	

no tilts	

Soft-set curves correspond to variables xi. Hard-set curves contribute to the value of the right hand side of the
constraints. Additional “sum-even” k variables (xj) are used to enforce that certain sums are even. Since a curve must
have at least one interval, a lower bound l of 1 is set for each curve variable, and a lower bound of 2 or 3 is set for each
“sum-even” variable. Constraints correspond to rows of A or D. The objective function is c. See Section 3.1 for a small
example.

We use the library LP Solve[7] to represent and solve MILPs. LP Solve uses a sparse matrix implementation, which
is essential for efficiency because the interval assignment problem is sparse; each curve bounds only a few surfaces.

2.3 Objective Function Goals and Prior Approaches
Setting up the constraints presented in Section 2.2 and solving the MILP is technically sufficient to “solve” the interval
assignment problem, in that it would be possible to mesh all of the surfaces according to their schemes and corners,
and hard-set intervals would be respected. However, the assigned intervals for soft-set curves would be arbitrarily far
from the goals. Also, depending on the objective function, without good bounds on the integer variables the MILP
might take exponential time to solve. Our objective is to craft an objective function that leads to a solution where

• the intervals for each curve is close to its specified goal.

The objective function in Tam and Armstrong[3] is to minimize the weighted sum of the deltas, where a delta is the
absolute value of an interval deviation from the goal G. Note |x-G| is a non-linear function, but it is a standard trick of
linear programming to compute it using a sum of two variables, |x-G| = D + d, by using the constraints D ! x-Gand
d ! "x+G, where D, d ! 0. More succinctly we constrain

and in effect minimize D + d so that only one of D or d will be non-zero.

In Tam and Armstrong[3] and our work, the delta weights are chosen so that curves with smaller goals have larger
weight. This reflects the fact that a one-interval change in a small curve is a larger relative change than in a long curve.
Also, we chose a smaller weight W for D, increasing intervals, than w for d, decreasing intervals. This again reflects
relative change. How much smaller W is than w depends on the initial goal. In particular, we use weights W and w
approximately 1/G and 1.2/(G - 1).

The strategy of minimizing the sum of the weighted deltas fails to meet our bulleted objective if a simplex-based[4]
linear program solver is used and large deltas occur. Since the simplex method chooses among vertices of the feasible
polyhedra, all of the change usually gets assigned to one curve of a side; see Figure 1. Large deltas might be avoided
in some cases by adjusting the goals before setting up the MILP, but doing this reliably is a global problem equivalent
to interval assignment.

Quadratic programming might meet the bulleted objective by minimizing the sum of the weighted deltas squared.
(Actually, one would like to minimize something like the sum over all edges e of the relative change in interval size,

Figure 1. Given the goals on the left, we prefer our solution to those on the right. If a simplex method is used in conjunction
with minimizing the weighted sum of interval changes, then, depending on the exact weighting, either Simplex A or Sim-
plex B will be the solution.

9

9

10

1

9

10

9

9

18Goals Simplex A Simplex B

7

7

14Our solution

D d– x G–= D d 0!,

6	

7	

13	

after waves	

Bad: breaks convexity, local minima are not global minima	

 IPOPT has limited global optimization capabilities	

Scaling stress tests

!

!

!

!

!

!

scaling by curves	

 scaling by faces	

Simple and Fast Interval Assignment 15

faces curves x(r)
s x(r)

f/s x(i)
s x(i)

f/s x(i)/x(r)
total s total f/s

160 1,061 0.028 5700 0.061 2600 2.2 0.091 1800

505 3,298 0.067 7500 0.21 2400 3.1 0.27 1900

1,600 10,614 0.23 7000 0.74 2200 3.2 0.98 1600

5,050 32,793 0.80 6300 2.3 2200 2.9 3.2 1600

Table 2: NLIA scaling by number of faces for a chain of mapping faces with no

sum-even constraints. Here “s” is time in seconds; “f” is # faces; and x(i)/x(r)

is the ratio of run-times for the integer bend problem and the relaxed problem.

curves x(r)
s x(r)

c/s x(i)
s x(i)

c/s x(i)/x(r)
time total s total c/s

2,000 0.027 74k 0.084 24k 3 0.11 18k

6,324 0.051 120k 0.37 17k 7 0.43 15k

20,000 0.14 140k 1.9 11k 14 2.0 10k

63,238 0.48 130k 7.0 9k 15 7.5 8k

200,000 2.0 100k 50 4k 25 52 4k

632,378 11 57k 430 1.5k 39 444 1.4k

Table 3: NLIA scaling by number of curves for a single mapping face. Here

“s” is time in seconds; and “c” is the number of curves = variables.

Usually no bend updates were necessary. For certain random number gen-

erator seeds in large problems, some bend updates were necessary: usually

only one, and the most I ever observed was five. It appears that the total x(i)

time is slightly worse than linear in the number of bend updates needed.

Scaling By Curves

I studied the scaling by the number of curves; see Table 3. I create a single

mapping face with many curves on each side, with random goals; see Figure 5d.

I ran five variants, increasing the number of curves by a factor of
√
10 each

time. For these problems, no bend updates were necessary.

The conclusions are that NLIA solves a one-constraint problem at the

rate of about 10,000 variables / second. This rate decreases with increasing

problem size: empirically the time is about O(v1.5) for v variables. A single

bend optimization problem is about six times as expensive as the relaxed

problem. This gets worse as the problem size increases: t(i) ≈ O((t(r))1.5)

empirically. This is still excellent timing for an integer optimization problem.

For both studies, the time for other steps, such as constructing the sub-

problem or bends, was insignificant compared to the solver time.

Simple and Fast Interval Assignment 15

faces curves x(r)
s x(r)

f/s x(i)
s x(i)

f/s x(i)/x(r)
total s total f/s

160 1,061 0.028 5700 0.061 2600 2.2 0.091 1800

505 3,298 0.067 7500 0.21 2400 3.1 0.27 1900

1,600 10,614 0.23 7000 0.74 2200 3.2 0.98 1600

5,050 32,793 0.80 6300 2.3 2200 2.9 3.2 1600

Table 2: NLIA scaling by number of faces for a chain of mapping faces with no

sum-even constraints. Here “s” is time in seconds; “f” is # faces; and x(i)/x(r)

is the ratio of run-times for the integer bend problem and the relaxed problem.

curves x(r)
s x(r)

c/s x(i)
s x(i)

c/s x(i)/x(r)
time total s total c/s

2,000 0.027 74k 0.084 24k 3 0.11 18k

6,324 0.051 120k 0.37 17k 7 0.43 15k

20,000 0.14 140k 1.9 11k 14 2.0 10k

63,238 0.48 130k 7.0 9k 15 7.5 8k

200,000 2.0 100k 50 4k 25 52 4k

632,378 11 57k 430 1.5k 39 444 1.4k

Table 3: NLIA scaling by number of curves for a single mapping face. Here

“s” is time in seconds; and “c” is the number of curves = variables.

Usually no bend updates were necessary. For certain random number gen-

erator seeds in large problems, some bend updates were necessary: usually

only one, and the most I ever observed was five. It appears that the total x(i)

time is slightly worse than linear in the number of bend updates needed.

Scaling By Curves

I studied the scaling by the number of curves; see Table 3. I create a single

mapping face with many curves on each side, with random goals; see Figure 5d.

I ran five variants, increasing the number of curves by a factor of
√
10 each

time. For these problems, no bend updates were necessary.

The conclusions are that NLIA solves a one-constraint problem at the

rate of about 10,000 variables / second. This rate decreases with increasing

problem size: empirically the time is about O(v1.5) for v variables. A single

bend optimization problem is about six times as expensive as the relaxed

problem. This gets worse as the problem size increases: t(i) ≈ O((t(r))1.5)

empirically. This is still excellent timing for an integer optimization problem.

For both studies, the time for other steps, such as constructing the sub-

problem or bends, was insignificant compared to the solver time.

Time for an integer solution is only a small multiple ���
 of the time for the relaxed solution.���
In contrast, Lex min max grows quadratic+ in problem size	

Runtime about O(c1.5) for c variables.	

Robustness stress tests

x3

x2

x1

!
 ! !
 ! !
 !

!
 !

Problems needing tilts to get integer solutions	

“radish”	

 Split curves provide more degrees of freedom: ���
more tilts are needed to remove fractional values.	

Only a few tilts are necessary, ���
 tilt for each split curve in the chain is simultaneous.	

Availability and Status

•  MeshKit algorithm implementation
–  Open source

•  http://gnep.mcs.anl.gov:8010/meshkit/
–  Well defined API
–  IPOPT optimization library is free

•  MA27 linear algebra library is free
•  but you have to download it yourself
•  HSL (formerly the Harwell Subroutine Library). A collection of Fortran codes

for large scale scientific computation. http://www.hsl.rl.ac.uk, 2011.
Includes MA27. IPOPT special instructions at http://www.hsl.rl.ac.uk/ipopt/

•  To do:
–  Robustness and quality testing on

large models
–  Tilt for sum-even constraints

•  better than just waves

Alternatives

• Why bother with the nonlinear solver?
–  it is fast, uses little memory
– but maybe you don’t have one

• Skip the relaxed cubic-objective phase
– start with piecewise linear adaptive bends
– efficiency would depend on numerics, how far the

optimal solution is to the initial goals

Alternatives

• Why sum-of-cubes objective function?
– Any power in [2, infinity] is possible.

•  Lex Min Max from 1997 is a form of L_infinity
•  The lower the power, the bigger the worst deviation,

but the fewer number of curves need to change
– Experimental. I tried powers of 2, 3, and 4.

•  2 concentrated deviations too much
•  4 spread deviations out too much in some contrived

cases
•  This was just my opinion

– Some other power may be better, depending on
what a “typical” model is for you.

Interval Assignment Summary

•  First known improvement to FEM interval assignment structure since 1997 lexicographic
min-max

–  Lots of people write new constraints for new schemes, but this is first change to objective (except
Graphics community solving related-but-different problem using MIQP)

•  Implemented in MeshKit, using IPOPT
–  scales to thousands of surfaces in nuclear reactor core models
–  1997-2013, Cubit runs lex min-max for every quad and hex mesh (that meshes the boundary first)
–  New solution may migrate to Cubit, as Cubit includes MeshKit library

Simple and Fast Interval Assignment Using

Nonlinear and Piecewise Linear Objectives

Scott A. Mitchell

Sandia National Laboratories, samitch@sandia.gov

Summary. Interval Assignment IA is the problem of assigning an integer number
of mesh edges, intervals, to each curve so that the assigned value is close to the goal
value, and all containing surfaces and volumes may be meshed independently and
compatibly. I solve IA more quickly than the prior lexicographic min-max approach.
A problem with one thousand faces and ten thousand curves can be solved in one
second. I still achieve good compromises when the assigned intervals must deviate a
large amount from their goals. The constraints are the same as in prior approaches,
but I define a new objective function, the sum of cubes of the weighted deviations
from the goals. I solve the relaxed (non-integer) problem with this cubic objective,
then adaptively change it into a piecewise linear function and resolve to find a natural
nearby integer solution. For variables stuck at non-integer values, I randomize and
rescale weights. If that fails, and for the sum-even constrains, I introduce non-linear
constraints to force integrality.

1 Introduction

1.1 Problem Definition

I revisit Interval Assignment (IA) for quad and hex meshing. IA is the problem
of assigning to each curve the number of mesh edges (intervals) it should be
subdivided into, so that every containing surface and volume can be meshed
according to its scheme. Different meshing algorithms have different require-
ments. For example, map-meshing a rectangular surface with quadrilaterals
requires that curves on opposite sides contain exactly the same number of
edges. Interval assignment is important for automation and meshing indepen-
dence, and also for mesh quality. Given a global IA solution, each surface and
volume containing a curve can be meshed independently without affecting
another. (This ignores the geometric spacing of the edges. Issues like skew
control may be addressed using interval assignment over virtual geometry.)
IA can be applied to triangular and tet meshes, but the problem is uninter-
esting because it is trivial to satisfy the requirements, and each curve may be
assigned intervals independently.

6 Scott A. Mitchell

1 2 3 4

(x-1)2 (x-2)2 (x-4)2 (x-3)2

wave-int.pdf

x3

x2

x1
!
 !!
 !!
 !

!
 !

Fig. 2: Left, wave integer constraints. Center & right, the global structure can
conspire to produce an effective coefficient larger than one: x3 = x1+x2 = 2x1.
The bend strategy can get stuck with x3 integer (e.g. 5) and x1 = x2 half-
integer (e.g. 2.5). Tilting to increase the objective weight of x1 and x2 may
overcome this, or a wave-constraint can force x1, x2 to an integer value.

Graphics Quad Meshing with Mixed-integer Optimization

Quadrilateral meshing has recently become popular in the Graphics commu-
nity [3]. Graphic’s objectives and types of surfaces are slightly different, but
the opposite-sides-equal constraints are universal for structured quad patches.
The models are typically smooth closed surfaces, divided into structured
patches. David Bommes has a series of papers, and a Best Thesis Award at
Eurographics 2013, exploring quad-meshing using mixed-integer optimization
problems with linear constraints and a quadratic objective, MIQP.

Bommes et al. [4] creates quadrilateral meshes of surfaces for graphics
modeling using two MIQPs. The meshes are based on the semi-structured
patches that result from defining quad-dual curves: a.k.a. loops in Spatial
Twist Continuum terminology. This has some similarities to midpoint subdi-
vision and fluid flow templates, except that the templates are not fixed, but
are the solution to a MIQP. The first MIQP fixes the number and position of
irregular vertices, the corners of the patches. Let us call this the corner-phase.
The second MIQP sets the structure of the patches, connects the dual loops,
and assign intervals. Let us call this the patch-phase.

The input is the graphics triangulation of a surface model. Sharp angles
define curves; these often do not form primal loops, and the location and struc-
ture of additional curves to close them is part of the solution. The goals are
good quad angles; orientation of the loops with respect to curvature and sharp
features, the cross field; and especially the number and placement of irregular
mesh vertices, i.e. those with edge valence different than four, singularities in
the cross-fields; plus any other user-specified or modeling or animation objec-
tives. The loops (templates) are not fixed a-priori, instead they follow from
the irregular vertices. The patch-phase problem is always feasible, and succes-
sively rounding non-integer variables to integer values and resolving always
leads to an integer solution, because it comes from the solution to the corner-
phase. Branch and bound, and other standard integerization techniques that
do not exploit the problem structure, have proven to be too slow in the Graph-

I just relax 	

 bend	

 tilt & wave! J	

•  New nonlinear objective function
•  Finesse integer constraints using

L1 minimization of convex
piecewise linear approximation

•  adapt piecewise, slope
•  heuristics for constraint interactions

tilts-bigfont.pdf

g 1 3 2 5 4 7 6 9 8

tilted objective

linearized-objective-bigfont.pdf

g 1 3 2 5 4 7 6 9 8

(g/x – 1)3 (x/g – 1)3

o o

o

o

o
o

o

o
full piecewise linear objective

o

Cubic-objective-bigfont.pdf

g 1 3 2 5 4 7 6 9 8

(g/x – 1)3 (x/g – 1)3

x(r)

x

2 Scott A. Mitchell

IA in some form is required for all quad and hex meshing. The prob-
lem is surprisingly difficult. The requirements are easily described locally, but
surfaces sharing common curves create dependencies that make IA a global
problem. A good algorithm is important. A greedy strategy of assigning in-
tervals for one surface, then for another surface, can fail by “painting yourself
into a corner.” Solving the global problem using standard optimization tech-
niques is difficult because IA requires an integer number of intervals. That is,
mesh nodes are discrete quantities dividing curves into a discrete number of
mesh edges. Half of an edge makes no sense.

Optimization and Linear Constraints

General global integer optimization is a difficult and slow problem, and any
effective IA algorithm must exploit the problem structure. A key feature of
all the constraints is that they can be described using a linear equation; that
is, if xi is the number of intervals assigned to the ith curve (or virtual curve,
etc.), then the equation describing the constraint only contains xi raised to the
first power, with no x2

i terms, etc. Linear constraints are the simplest in opti-
mization. We write Ax = b; equality and inequality constraints are equivalent
using standard conversions, such as slack variables, or requiring both Ax ≥ b
and Ax ≤ b. Every variable has upper and lower bounds, perhaps infinite.
Interval variables must be integer and positive, in the natural numbers N.
Integer variables are identified by an indicator set I. There may be additional
variables, perhaps for computing intermediate quantities not apparent in the
model; for conciseness we also denote these by x. An important example of
this is for unstructured quad meshing schemes, such as paving, where the sum
of intervals around any set of bounding curves must be even. We constrain
2xj =

�
b∈bdy xb, and require xj to be an integer. Any assignment satisfying

these constraints is feasible. Removing the requirements for integrality defines
the relaxed problem. A feasible solution to it is a useful step towards an integer
solution.

We have an idea of the number of intervals we would like for each curve,
the goals. These may come from a sizing function: e.g. edges about length 4,
so a curve of length 10 has a goal of 2.5 intervals. Or the user may specify
the number directly, such as “at least ten edges through the thickness for
accuracy in weld simulations.” We assume goals are constant throughout IA.
There may be no feasible solution satisfying all the goals. We measure the
deviation of the achieved interval xi from its goal gi. We have some objective

function f(x, g) of the deviations, where f(x) = 0 if all the deviations are
zero, and f(x) > 0 otherwise. IA in standard form is

min f(x)

s.t. Ax = b

xI ∈ N
l ≤ x ≤ u.

(1)

Thanks

It takes a village to make me successful
•  Thanks to Tim Tautges for suggesting and supporting this project
•  Thanks to Tim Tautges, Rajeev Jain, for MeshKit
•  Thanks to Carl Laird, for IPOPT
•  Thanks to David Bommes for Graphics quads via mixed-integer quadratic

programming

•  This work was funded under the auspices of the Nuclear Energy Advanced Modeling and
Simulation (NEAMS) program of the U.S. Department of Energy Office of Nuclear Energy, U.S.
Department of Energy. Partial support for this work was provided through Scientific Discovery
through Advanced Computing (SciDAC) program funded by U.S. Department of Energy, Office of
Science, Advanced Scientific Computing Research. Sandia National Laboratories is a multi-program
laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

•  Is the government still shut down?
Will mesh for food.

